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Abstract. We provide a detailed description of the response of an experimentally accessible,
open, driven quantum system in its stationary state to a weak periodic signal. The system, a single
mode of the quantized radiation field in coherent interaction with a sequence of two-level atoms
and coupled to an environment of temperatureT , is shown to exhibit stochastic resonance on
output, under changes ofT . Furthermore, at vanishing temperature, the transition rates between
the metastable states of the radiation field remainfinite and are set by the quantum noise level at
T = 0 K. Consequently, signal enhancement and synchronization can be achieved even in this
very quantum limit, for a properly tuned signal frequency.

1. Introduction

The concept of stochastic resonance was developed in 1981 to explain the nearly periodic
occurences of ice ages in the world climate [1,2]. It is a paradigm of the counterintuitive role
that noise can play in nonlinear systems [3]. Generally, stochastic resonance can occur in a
nonlinear bistable system subject to a stochastic (noise) and a weak periodic force (signal) [4,5].
Transitions between the associated metastable states occur at random times and are activated
by the noise. The periodic drive, by itself insufficient to cause deterministic transitions, leads
to a periodic modulation of the transition rates. By variation of the strength of the noise, it has
been shown that at an optimalnonvanishingnoise level the system switches almost periodically
between the two states, at the frequency of the applied signal. As the noise is increased beyond
this optimal value, the periodicity of the switching is again suppressed. Consequently, the
response of the bistable system to a weak coherent signal in the presence of noise undergoes a
resonant-like behaviour as the noise level is increased. This phenomenon is called stochastic
resonance.

At first sight it might seem surprising that a definite nonvanishing noise level is needed to
achieve the most regular response of the system. Nevertheless, the basic mechanism behind
this effect is easy to understand: imagine, e.g., the noise level is very low. Then there are very
few transitions between the metastable states per modulation period and it is rather unlikely for
the stochastic and the periodic driving to act cooperatively, so as to induce periodic transitions.
On the other hand, if the noise level is very high, there will be too many transitions during
one modulation period, without any correlation between the applied signal and the response of
the system. In between, at some intermediate noise level, when the noise-induced transition
frequency is near the frequency of the modulation, an optimal synchronization is expected:
then it will be most probable that the system jumps from one state to the other and back again
exactly once during a modulation cycle. The jumps occur at times when, due to the periodic
modulation of the transition rates caused by the applied signal, the ensuing transition rates
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assume their maxima. Through this cooperativity between the stochastic and the periodic
force a periodic signal can be amplified in the presence of noise rather than attenuated [1–22].

The above picture is purely classical: surmounting the threshold which separates the
metastable states of the bistable system can only be achieved through the classical stochastic
force [23, 24] or its combination with the periodic signal [5]. In the microscopic realm,
however, and at sufficiently low temperatures, generic quantum effects such as tunnelling or
vacuum fluctuations might alter the picture and provide alternative and efficient transition
mechanisms. Indeed, it is quantum tunnelling which renders certain quantum states of
molecules metastable [25] and it is the coupling to the electromagnetic vacuum which causes
resonance fluorescence of single atoms [26].

As a matter of fact, first studies of two-state systems which undergo quantum tunnelling
have shown that stochastic resonance disappears for symmetric transition rates between both
states (corresponding to a symmetric tunnelling barrier), in the limit of low temperatures [27–
30]. This is essentially due to the relatively weak temperature dependence of the tunnelling
rates [31–34] as compared with the exponential sensitivity of the (classical) Kramers rate which
resides at the very heart of stochastic resonance in the classical domain [4]. Nonetheless,
stochastic resonance can be recovered if one allows for an asymmetry in the threshold seen by
the two metastable states, which actually restitutes the desired exponential sensitivity of the
transition rates on the temperature [27–30]. Since, here, quantum tunnelling is at the origin
of the nonvanishing transition rates between both states, the predicted signal enhancement at
finite temperature would be a clear signature of quantum stochastic resonance.

Another contribution [35] has recently demonstrated stochastic resonance in the response
of an open, driven quantum system, the micromaser [36–57], to a weak periodic signal. Here,
transitions between metastable states of the quantized radiation field coupled to a sequence
of two-level atoms are activated by quantum noise induced by the quantum mechanical
measurement process on the one hand and by the zero-point fluctuations of the environment on
the other. Quantum stochastic resonance allows for the optimal synchronization of quantum
jumps between the metastable states of the quantized radiation field with the applied signal at
finite temperature [35]. This paper provides a detailed theoretical analysis of this system,
illustrated by numerical simulations. In particular, we characterize stochastic resonance
displayed by the maser via the signal-to-noise ratio (SNR) on output, as well as via the
residence time distribution in either of the metastable states, and study the dependence of
signal enhancement and synchronization on the signal frequency on input.

The paper is organized as follows. In the next section, we summarize the basics of
micromaser dynamics, with special emphasis on its bistable operation mode [36]. We describe
the numerical simulation of a single realization of the maser dynamics, in close analogy to
published experimental results, and discuss the origin of the observed quantum jumps between
the metastable maser states. Explicit expressions for the relevant transition rates are derived,
and the temperature dependence of the latter is analysed. In section 3, we describe quantum
stochastic resonance in the micromaser, starting out from an exact numerical solution of the
maser master equation under external driving. A properly defined two-state model is shown
to reproduce the exact solution very well, provided the intra-well dynamics isnot completely
neglected. Both analytical models are compared with the results of numerical simulations of
the maser dynamics. Section 4 concludes the paper.

2. Essentials on the micromaser

Let us start with a short description of the essential features of the quantum system under study.
The micromaser, a single mode of the quantized radiation field interacting with a sequence of
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two-level atoms and coupled to a dissipative environment, is considered as the experimental
realization of ‘the protoype of an open, driven quantum system’ [37]. It has provided
rich experimental evidence for various basic quantum phenomena such as sub-Poissonian
photon statistics [54, 55], quantum collapse and revival [52], vacuum Rabi oscillations [51],
decoherence of a quantum state [53], Schrödinger cats [53], Heisenberg dogs [57] and quantum
jumps [36].

The micromaser [38–40, 42] consists of a single mode resonator which is crossed by a
beam of atoms at such a low flux that at most one atom is present in the cavity at the same time.
The atoms are initially prepared by a pump laser in a high-lying Rydberg level|u〉. They enter
the cavity in this level, which is resonantly coupled by the cavity mode of frequencyω to a
lower-lying Rydberg state|d〉. The atoms (obtained from a thermal atomic beam) are velocity
selected, such that they enter the cavity at a fixed velocity, and consequently interact with the
radiation field inside the cavity for a precisely defined interaction timetint (the experimental
error oftint is estimated to approximately 1–3% [41]). Hence, they accumulate a well-defined
Rabi angleφ = �tint during the coherent interaction, with� the vacuum Rabi frequency,
and perform the familiar Rabi oscillations between the upper and the lower states|u〉 and
|d〉. After exit from the cavity the atoms are detected via ionization in two static electric field
regions, which allows one to discriminate between atoms leaving the cavity in|u〉 or |d〉. The
experimental detection efficiency is essentially limited by the finite spontaneous lifetimeτse

of atomic Rydberg states in free space (after exit from the cavity).
Since all atoms enter the cavity in|u〉, an atom which is detected in|d〉 after exit has

deposed a photon in the cavity mode during the coherent interaction. Hence, the atoms feed
energy into the cavity mode or induce population transfer between the energy eigenstates (the
number states|n〉, n > 0) of the quantum harmonic oscillator represented by the quantized
radiation field. After exit of an atom from the cavity the population of the field evolves like a
damped harmonic oscillator, the damping being caused by the coupling of the field mode to
the cavity walls which are assumed to be in thermal equilibrium at temperatureT . However,
the damping rateγ of the cavity is sufficiently small such that before the cavity field has time
to relax into the thermal state, the next atom enters the resonator.

The temporal separation of the atoms on entrance to the resonator being Poisson-
distributed, with an average given by the inverse of the atomic fluxr, the various timescales
are arranged such that

tint � 1

r
� 1

γ
.

Consequently, for any initial population distributionp(0) = (p(0)0 , p
(0)
1 , p

(0)
2 , . . .) of the number

states of the cavity field (in short: of the ‘photon distribution’) the maser field will evolve into a
stationary statep(ss) [38] which is defined by a dynamical equilibrium where photon losses due
to damping will be counterbalanced by the photon gain due to the pumping of the cavity field
by the atoms. The actual appearence of this stationary state depends on the various parameters
which define the atom–field interaction and the subsequent relaxation. As a matter of fact,p(ss)

essentially depends on the so-called pump-parameterθ = φ√Nex and on the average thermal
photon numbernb = (exp(h̄ω/kT )− 1)−1, whereNex = r/γ is the atomic flux measured in
units of the thermal damping rate. Depending on the choice ofθ andnb, pn plotted versus
n may display one or several maxima, each of them being rather narrow with respect to a
Poissonian distribution (this is the origin of sub-Poissonian photon statistics [54, 55] for a
single peaked photon distribution).

Throughout this paper, we shall concentrate on the case of a double-peaked distribution
of the pn, which corresponds to the bistable operation mode of the micromaser [36, 39].
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Furthermore, we shall neglect the finite spontaneous lifetimeτse and hence the finite detection
efficiency in the experiment, as well as the (narrow) velocity spread of the atoms and the
consequent error bar of the experimental interaction time of the atoms with the field. All these
additional noise sources, which are unavoidable in a real experiment, may shorten the typical
timescales of the phenomena we shall report on, without qualitatively changing the effect we
are interested in [35]. We expect quantum stochastic resonance in the micromaser to be a
robust phenomenon as most nonlinear stabilization phenomena typically are.

2.1. Master equation and stationary state

We now turn to the quantitative description of the maser dynamics and first summarize the
relevant results of standard maser theory [37–40,42].

The photon field in the cavity is described by its density operator. Its evolution equation is
well known [39,40], and so is the temporal evolution of populations and coherences. However,
for the sake of simplicity, we only deal with states that are diagonal in the photon number
representation throughout this paper, choosing the thermal equilibrium state as the initial state
of the cavity field. This state is diagonal in the photon number, and due to the maser dynamics
any diagonal state remains diagonal for all times. Hence, we can restrict ourselves to the
master equation for the diagonal elements of the field density matrix, i.e. for the population of
the eigenstates of the harmonic oscillator represented by the cavity field. The time evolution
of the ensemble average of the photon field (on timescales longer thantint) reads [39]:

ṗn = r[βn−1pn−1− βnpn] + γ [nbnpn−1− (nb(n + 1) + (nb + 1)n)pn + (nb + 1)(n + 1)pn+1]

n = 0, 1, 2, . . . (1)

where βn = sin2(φ
√
n + 1) describes the probability of detecting an atom in|d〉 after

interaction withn photons in the cavity. The terms proportional tor in (1) describe the
coherent interaction between the atoms and the cavity field, the ones proportional toγ , the
cavity damping according to the standard master equation for a damped harmonic oscillator.
Obviously, a slow (with respect totint) modulation of the atomic fluxr can easily be incorporated
in our treatment (see section 3 below).

Fort →∞ each solution of (1) will loose the memory of the (normalized) initial condition
and approach the following, uniquely determined steady state [38]:

p(ss)
n = p(ss)

0

(
nb

nb + 1

)n n∏
k=1

(
1 +

Nexβk−1

nbk

)
n = 1, 2, . . . (2)

which, as already mentioned above, can display one or several maxima as a function ofn.
p
(ss)
0 can be obtained from the normalization condition

∑∞
n=0p

(ss)
n = 1. For sufficiently large

values ofNex and finitenb, (2) can be formally reduced to a form which is parametrized byθ

andnb alone.
In all our subsequent calculations, we use parameter values which we lend from the

Garching experiment [36,40–42]:γ = 1/0.06 s−1,� = 36 000 rad s−1, tint = 28.69×10−6 s
(i.e. φ = 1.033) andω = 2π × 21.506 GHz. With the choiceNex = 40 this gives a pump
parameterθ = 6.533, wherep(ss) displays two maxima, i.e. the maser operates in the bistable
mode. The position of the maxima ofp(ss) is independent of the temperature, but not their
relative strength, as is obvious from figure 1. Whereas the probability distribution is strongly
asymmetric forT = 0 K andT = 2.0 K, it is close to a symmetric partition between the
two maxima localized around photon numbersn1 = 6 andn2 = 26 for T = 0.6 K. In
addition, for higher temperatures, the maxima are not as distinct as for lower ones and it is
more likely to find photon numbers somewhere between the most probable valuesn1 andn2

(notablyp(ss)(n3 = 13) does not vanish any more on the linear scale on the left of figure 1).
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Figure 1. The steady state of the photon distribution forθ = 6.533,Nex = 40 and (from top to
bottom)T = 0 K, 0.6 K, 2.0 K, on a linear (left) and a logarithmic (right) scale, respectively. The
positions of the maxima atn1 = 6 andn2 = 26, and of the minimum atn3 = 13 are independent
of the temperature, but not their relative strength. For higher temperatures it is more likely to find
population atn3. Up toT ' 2 K, the minimump(ss)

n3 is still small compared with the maximap(ss)
n1

andp(ss)
n2 .

Since figure 1 depicts the steady state (2) of the master equation (1), we have to remember
that the latter only describes the time evolution of theensemble averageof the photon
distribution. This implies an average over all random influences on the system. The latter
are:

• The noise caused by the measurement of the exiting atoms. A single state reduction
destroys the entanglement between the atom and the cavity field mediated by the
coherent interaction and allows solely for values 0 or 1 ofβ read from the detection
device. Only averaging over many atoms reproduces the quantum mechanical prediction
06 β =∑n βnpn 6 1 [39,48,49].
• The noise caused by the interaction with the cavity walls, which has a nonvanishing value

even at temperatureT = 0 K, due to the zero-point fluctuations of the environment.
The latter ‘stimulate’ [26] spontaneous losses from the maser field even at vanishing
temperature of the environment.
• The noise introduced by the random (Poisson-distributed) arrival times of the atoms on

entrance into the cavity. This amounts to a fluctuation in the damping time of the cavity
field between the coherent interactions with two successive atoms [38].

Note that the first two of the above list are sources ofquantumrather than classical noise. Due
to the presence of these noise terms, in asingle realizationof the micromaser, i.e. during
the process of subsequent detections of atoms emerging from the resonantor, the photon
distribution will actually jump between different number states of the field [39, 48, 49] for
most of the time residing in the vicinity of either one of the photon numbersn1 andn2 which
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Figure 2. The average gain and loss rate of the photon number. Solid curve: probabilityβn for
detection of the exiting atoms in|d〉 versusn, for a Rabi angleφ = 1.033. Since each atom leaving
the cavity in|d〉 adds one photon to the cavity,βn is the average gain rate of the photon number
(in units of the atomic fluxr), givenn photons in the cavity. Dashed line: average loss rate of the
photon number due to damping, forNex = 40 (〈ṅ〉loss = −γ n = −r/Nexn, for nb � n, (1)). If
the gain rate is higher than the loss rate,nwill tend to higher values, and vice versa (as indicated by
the arrows). Therefore, of the three pointsn1 ' 6, n2 ' 26 andn3 ' 13 satisfying the condition
‘gain rate equals loss rate’, onlyn1 andn2 are stable, corresponding to detection probabilities
βn1 ' 0.15 andβn2 ' 0.65. The dotted lines indicate changes ofn1, n2 andn3 with Nex.

label the maxima of the stationary state in figure 1. A single random event such as the
emission of a photon by an atom into the cavity mode enforced by the detection of|d〉, or
the emission or absorption of a photon by the environment, causes a single transition between
neighbouring statesn → n ± 1 on a short timescale. The combined action of several such
random events causes ‘macroscopic’ jumps of the maser field between photon states with
n ' n1 andn ' n2, as we shall see in the next paragraph. Since these macroscopic jumps are
activated by quantum noise, they provide an experimentally accessible example of quantum
jumps between metastable states of a basic quantum system.

2.2. Quantum jumps

Indeed, such quantum jumps have already been observed in the laboratory [36]. Since the direct
probing of the resonator field is not possible (any detection device would spoil the quality of
the cavity, i.e. enhance its damping rate), the statistical properties of the atom detection
(‘click statistics’) on exit from the cavity are used to infer on the photon statistics inside the
cavity [37, 41]. The probabilities of detecting an exiting atom in|d〉 differ depending on
whether the photon distribution is peaked nearn1 or n2, namely approximatelyβn1 = n1/Nex

or βn1 = n2/Nex (see figure 2). These probabilities can be measured simply by counting the
|d〉-detections during a time interval1t . 1t must be short compared with the timescale of the
jumps but long enough that many (&100) atoms are detected during1t (typically,1t ' 0.1 s).
Then, jumps of the detection probability betweenβn1 andβn2 are a signature of jumps of the
cavity field between its metastable states.
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Very much like the experiment, a single realization of the micromaser dynamics can be
obtained by numerical simulation [39]. By drawing random numbers, the Poisson-distributed
arrival times of the atoms are determined. After interaction with the cavity field theprobability
of detecting the atom in|d〉 isβ =∑n pnβn, wherepn denotes the photon number distribution
just before the interaction (i.e. in the moment the atom enters the cavity). In which state the
atom isactuallydetected depends onβ being larger or smaller than another random number.
Subsequent to each detection, the usual quantum mechanical state reduction occurs. For the
photon distribution of the cavity field, this implies a ‘reset’ of the probability distribution [39],

pn
′ =


βn−1

β
pn−1 n = 1, 2, . . . , p′0 = 0 detection in|d〉

1− βn
1− β pn n = 0, 1, 2, . . . detection in|u〉

(3)

wherep′n denotes the photon number distribution after the state detection. Between two atoms,
the photon field is damped according to the standard master equation for a damped harmonic
oscillator (the terms proportional toγ in (1)) [39]. In this way, the numerical simulation of the
micromaser defines a stochastic process which is completely characterized by the arrival times
of the atoms and the states they are detected in. From this, the corresonding time evolution of
the photon number distributionp(t) can be obtained via (3) and the damping master equation.

In order to obtain the characteristic timescales which determine the quantum jumps we
need a further refinement of this stochastic process. Indeed, in the above, pumping and damping
of the cavity field are not treated on an equal footing. Whereas the pumping is described on the
microscopic level of single detection events of individual atoms via (3), the damping step is
accounted for by the adequate master equation, which implies an ensemble average. Therefore,
at a given time, we still have to deal with a photondistributionover the entire photon basis.
However, the damping of the field can also be described on a microscopic level, e.g. as the
interaction with a second beam of two-level atoms which are weakly coupled to the cavity
mode and have an initial state distribution determined by the Boltzmann factor [40]. This
additional, weak coupling represents the interaction with the environment through the cavity
walls and yields, after a suitable ensemble average, the damping master equation. It allows
one to mimic the cavity damping by a sequence of single atom detections of the atoms of the
weakly interacting beam, and hence to identify the complete maser dynamics with a jump
process on the discrete ladder of number states|n〉, starting out from a well-defined initial
state|n0〉. Any such jump is caused by the detection of either a strongly coupled atom after
coherent interaction (3), or of a weakly coupled atom during the damping stage. The transition
probabilities between adjacent number states per unit time can now be readily read from (1):

t+n = γ [Nexβn + nb (n + 1)] n→ n + 1 (4a)

t−n = γ (nb + 1) n n→ n− 1 (4b)

with r = γNex. In this picture, which is best adapted for our purpose, the field mode contains
a well-defined photon number at any instant of time. It also elucidates the separation of
timescales between jumps in the vicinity of eithern1 or n2, and jumps from the vicinity of
n1 to the vicinity ofn2, respectively. The latter are the manifestation of the bistability of the
cavity field: imagine, e.g., there aren photons in the cavity withn close ton1. The photon
number can jump fromn to n− 1 because the cavity walls absorb a photon, or ton + 1 either
because the cavity walls emit a photon, or because an atom is detected in|d〉. As illustrated in
figure 2, the probability of detection in|d〉 decreases for increasingn aroundn1, and therefore
the photon number will stay close ton1 for a long time. Consequently, the photon number
n1 represents a metastable state of the maser. Only as a result of an accidental fluctuation
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(figure 2 depicts the average behaviour!) corresponding to a bunching of jumps thatincrease
the photon number by one, eventually the photon number can cross the unstable point atn3,
to approach higher values ofn. In the regionn > n3 the average gain rate of the photon
field inside the cavity is higher than the average loss rate and the photon number will quickly
approach the second metastable state aroundn2. Again, only when, accidentally, a bunching
of jumpsdecreasingthe photon number by one occurs, can the photon number leave the region
aroundn2 and approach the metastable state aroundn1.

Note that such macroscopic jumps between the vicinity ofn1 andn2 do also occur at
T = 0 K. Neithert+n nort−n vanishes in this situation, the timescales only get longer. However,
for nb = 0 solelythe detection of atoms in|d〉 increases the photon number in the cavity (here
we exclude the impact of trapping states|nt 〉 [50] defined byβnt = 0; this can be guaranteed
by appropriate choice oftint [39]) and spontaneous lossesalonedecrease the photon number.
Hence, the jumps of the maser field between its metastable states are of pure quantum origin.
A finite temperature,T , only enhances the thermal fluctuations and reduces the characteristic
timescale of the quantum jumps [39].

Finally, figure 2 also illustrates the modulation of the transition rates induced by a
modulation of the fluxNex. The largerNex, the smaller the separation of the metastable
point n1 and of the unstable pointn3, causing an enhancement of the escape rate from the
metastable state labelled byn1. Simultaneously, increasingNex increases the separation ofn2

andn3 and therefore decreases the escape rate from the metastable state associated withn2.
The converse scenario applies for a decrease ofNex and we shall rely on this behaviour in our
discussion of stochastic resonance below.

2.3. Transition rates and metastable states

The above description of the maser dynamics as a jump process allows for an explicit calculation
of the transition rates between the metastable states of the maser field, in terms oft+n and of
the stationary solutionp(ss) of (1). Following the general prescription outlined in chapter 7
of [58], the average time for the photon number to switch fromni to nf is given by

〈τ 〉ni→nf =
nf∑
n=ni

[p(ss)
n t+n ]

−1
n∑

m=0

p(ss)
m nf > ni (5a)

〈τ 〉ni→nf =
ni∑

n=nf
[p(ss)
n t+n ]

−1
∞∑
m=n

p(ss)
m ni > nf . (5b)

Figure 3 shows〈τ 〉n1→n and 〈τ 〉n2→n as a function ofn for θ = 6.533,Nex = 40, and at
temperaturesT = 0.6 K andT = 2.0 K, respectively.n1 andn2 again label the metastable
maser states. It is evident from the figure that for sufficiently low temperatures the relaxation
times in the vicinity ofn1 andn2 are very short with respect to the timescale for quantum
jumps between the metastable states. Under these conditions, the bistable maser operation
is very similar to the familiar two-state models which form the basis of most descriptions of
stochastic resonance. The transition rates between both metastable states are then given by

W12 = 〈τ 〉−1
n1→n2

W21 = 〈τ 〉−1
n2→n1

(6)

respectively. For large temperatures, the definition of the metastable states is less
straightforward as their typical ‘lifetimes’ become comparable with the intra-state relaxation
times (compare the lower panel of figure 3 and figure 1(c)), and a two-state model is no
more completely adapted to the actual physical situation. We shall come back to this point in
section 3.2.
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Figure 3. The mean passage time〈τ 〉ni→nf for the photon number to reach the valuen, starting

from the minima of the steady state distributionp(ss) at n1 = 6 andn2 = 26 (according to (5a)
and (5b)). Top: T = 0.6 K, θ = 6.533,Nex = 40. 〈τ 〉ni→nf depends only weakly onni andnf ,
providedni is chosen close ton1 andnf close ton2, respectively. In other words, the relaxation
times for reaching the local equilibrium distributions aroundn1 andn2 are very small compared with
the mean passage times〈τ 〉12 and〈τ 〉21 from n1 to n2. Bottom:T = 2.0 K, θ = 6.533,Nex = 40.
Local relaxation times and mean passage times〈τ 〉n1→n2, 〈τ 〉n2→n1 become comparable.

Figure 4 shows the transition rates which follow from (6), as a function of 1/T and on a
logarithmic scale, for two different values ofθ andNex†. In contrast to the familiar Kramers
rate for a classical particle in a bistable potential [23,24], which corresponds to a straight line
in such a plot, the maser transition rates saturate for 1/T → ∞. This reflects the fact that
even atT = 0 K transitions are possible, due to the remaining quantum noise sources, see (4a)
and (4b). The saturation sets in earlier for〈τ 〉n2→n1, because even atT = 0 K the cavity walls
can still absorb photons from the mode, thereby enhancing transitions towards smaller photon
numbers (see also the upper panel of figure 1). Whereas the choice ofNex = 40 (θ = 6.533)
provides symmetric residence times atT ' 0.48 K,Nex = 49.7 (θ = 7.282) realizes almost
symmetric sojourn times in the limitT = 0 K. We shall take advantage of this handle on
〈τ 〉n1→n2 and〈τ 〉n2→n1 viaNex (or θ ) at the end of section 3.3.

† When comparing figure 4(a) with the corresponding results presented in [35], which were obtained from numerical
simulations of the micromaser dynamics, a slight deviation will be detected. The reason for this is that in the
simulations used in [35], for numerical reasons, the length of the interval between the arrival times of two subsequent
atoms (during which the damping of the photon field is performed) was not allowed to exceed a certain upper limit.
Therefore, the arrival times of the atoms were not exactly Poisson-distributed, leading to a slightly different effective
value ofNex.
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Figure 4. The average residence time〈τ 〉n1→n2 in state 1 (centred around the lower photon number
n1 ' 6), and〈τ 〉n2→n1 in state 2 (centred around the higher photon numbern2 ' 26), versus 1/T .
The curves have been obtained by evaluation of〈τ 〉n1→n2 and〈τ 〉n2→n1, according to (5a) and
(5b), respectively. A deviation from Kramers’ law (a straight line in this semilogarithmic plot) is
detected: the rates saturate for 1/T →∞, due to the nonvanishing transition rates between states
1 and 2 atT = 0 K, see (4a) and (4b). These are a consequence of the zero-point fluctuations of the
environment and of the coherent coupling of|u〉 and|d〉 by the cavity field, respectively, and hence
of pure quantum origin. The temperature for which〈τ 〉n1→n2 ' 〈τ 〉n2→n1 (‘symmetric’ transition
rates) can be tuned via appropriate choice ofθ orNex: (a) θ = 6.533,Nex = 40. The two curves
cross atT ' 0.47 K, with 〈τ 〉n1→n2 = 〈τ 〉n2→n1 ' 44 s. AtT = 0 K, 〈τ 〉n1→n2 � 〈τ 〉n2→n1. (b)
θ = 7.282,Nex = 49.7. 〈τ 〉n1→n2 ' 〈τ 〉n2→n1 atT = 0 K, i.e. symmetric transition rates in the
quantum limitT = 0 K.

3. Quantum stochastic resonance in the micromaser

We have now set the stage to study the response of the micromaser in its bistable mode to a
weak periodic signal which in itself is insufficient to induce periodic switching between the
metastable states of the cavity field. Can this quantum device be used to achieve maximum
enhancement of the signal, or optimal synchronization with the signal, at afinite noise level,
much in the spirit of stochastic resonance?

Indeed, it can, as we shall show in the remainder of this paper, where we consider the
maser cavity as a sort of nonlinear detection unit. Our input signal is chosen as a modulation
of the atomic fluxNex, which is also a realistic choice from the experimental point of view.
In the laboratory, such a modulation is tantamount to modulating the intensity of the pump
laser which prepares the atoms in|u〉 before they enter the resonator. The output, i.e. the
response of our quantum mechanical detection unit to the signal on input is given by the
detection probabilityβ(t) of the atoms in the lower Rydberg state|d〉 on exit from the cavity.
An enhanced periodicity of the detection signal on output (with the period of the input signal)
at finite noise level will then be the signature of stochastic resonance.

To start with, by appropriate choice of signal amplitude1Nex and frequencyωmod, we
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Figure 5. The periodic solutionp(ss)(t) of (1). T = 0.6 K, tmod = 42 s, φ = 1.033 and
Nex(t) = 40 + 6.9 cos(2π t/tmod). The bistability of the maser field is preserved over the whole
range ofNex.

have to modulate the transition frequencies between the metastable states of the maser field
such that:

• the bistability of the dynamics is conserved over an entire modulation period, i.e.1Nex

must not be too large;
• the modulation periodtmod= 2π/ωmodroughly matches the timescale of the noise-induced

transitions in the absence of driving.

Whereas the choice of1Nex can be guided by inspection of figure 2,ωmod can be inferred
from figure 4. For the former, we chose1Nex = 6.9, and for the latter we guess that some
value oftmod between 10 and 1000 s should do.

Because of the periodicity introduced by the time dependence ofNex(t) = 〈Nex〉 +
1Nex sin(ωmodt), the master equation (1) no longer has a stationary, but rather a time-
dependent, periodic solutionp(ss)(t) = p(ss)(t + tmod), which will be approached for any
normalized initial condition in the limitt →∞. Figure 5 shows an example forT = 0.6 K,
Nex = 40,1Nex = 6.9, tmod = 42 s. As required above, the bistability is conserved over the
entire range ofNex (i.e. the modulation is ‘small’). Figure 6 shows the corresponding output
of the maser, i.e. the temporal evolution of the detection probabilityβ(t) on exit, for different
values of the temperature of the environment. This result was obtained by the simulation
procedure outlined in section 2.2 above. The figure shows that the best synchronization of the
quantum jumps is achieved forT ' 0.6 K (see also the figures 8–10 and 17 below). However,
a visual inspection alone of plots like the ones in figure 6 is generally insufficient to judge the
achieved signal enhancement (as a consequence of the generally large background noise). We
therefore need a quantitative measure of stochastic resonance and turn first to the most familiar
quantity used in this context, the SNR.

3.1. Signal-to-noise ratio

In terms of the SNR on output, stochastic resonance is defined as a maximum of the SNR at
a finite value of the strength of the noise on input [4]. In our case, the strength of the input
noise is controlled via the temperatureT . The SNR is extracted from the power spectrum of
β(t) as illustrated in figure 7. At the signal frequencyωmod = 2π/tmod (as well as at higher
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Figure 6. The time evolution of the probabilityβ to detect an atom in|d〉 with periodically
modulated atomic fluxNex(t) = 40 + 6.9 cos(2π t/tmod). β is obtained from the simulation of the
maser dynamics (as decribed in section 2.2) by counting the atomic detections during time intervals
of length1t = 0.5 s. tmod = 42 s,φ = 1.033 and (a) T = 0.3 K, (b) 0.6 K, (c) 1.2 K. The
noise-induced synchronization of quantum jumps is poor for the lowest temperature (rare quantum
jumps), optimal for the intermediate temperature (almost regular quantum jumps) and again poor
for the highest temperature (too frequent quantum jumps).

harmonics), there is a sharp peak (the signal peak), the rest of the spectrum (the noise part)
has approximately Lorentzian shape. The SNR is given by the area under the signal peak,
after subtraction of the noise background, divided by the amplitude of the noise spectrum at
the signal frequency†.

The power spectrum ofβ(t) can either be directly obtained from the simulation of the
maser dynamics, i.e. by a Fourier transform of the detection signal of figure 6 (much as an
experimentalist would do), or it can be calculatedexactlyas follows. The autocorrelation
function ofβ(t) reads

C(τ) = 〈〈β(t + τ) β(t)〉〉tmod

where we average over the signal period and over the ensemble of jump processes which
we introduced in the motivation of (4a) and (4b). The ensemble average can be performed
by summation over all possible photon numbersm at time t andn at time t + τ , where the

† Note that there is a difference between the theoretical definition of the SNR and the—pragmatic—definition typically
used in experiments [4]. The experimental definition compares the total output power (i.e. the sum of output noise
and signal) with the background noise level, at the signal frequency. Consequently, the experimental SNR is a
dimensionless quantity which never decreases below unity. Since increasing the available integration time makes the
signal peak sharper and higher, the experimental SNR increases with the experimental sampling time. In contrast,
the theoretical SNR, defined as the ratio of theareaunder the signal peak and of the background noise power at the
signal frequency, has the dimension of frequency and is independent of the integration time.
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Figure 7. Power spectral density of the detection signalβ(t) on output from the maser cavity, for
T = 0.6 K, tmod= 42 s,〈Nex〉 = 40,1Nex = 6.9. Thin curve: result of a simulation of the maser
dynamics (see section 2.2 and figure 6 above), averaged over 20 runs of 2.5 million atoms each.
Thick curve and circles: predictions of (9) and (8), respectively.

corresponding statistical weightspm(t) andpn(t +τ) obey the master equation (1). Therefore,

C(τ) =
∞∑

m,n=0

βnβm〈pn(t + τ |m, t)p(ss)
m (t)〉tmod. (7)

Here,pn(t + τ |m, t) is the probability of findingn photons in the cavity mode at timet + τ ,
givenm photons at timet . p(ss)

m (t) specifies the probability to findm photons at timet , with no
knowledge about previous timest ′ < t . As we know,pn(t + τ |m, t) approaches the periodic
solutionp(ss)

n (t + τ) of (1) for τ → ∞. Therefore, in the limitτ → ∞, C(τ) approaches a
periodic functionCS(τ ) given by

CS(τ ) =
∞∑

m,n=0

βnβm〈p(ss)
n (t + τ)p(ss)

m (t)〉tmod CS(τ ) = CS(τ + tmod).

By virtue of the Wiener–Khinchine theorem [59], the power spectrum ofβ(t) is the Fourier
transform of the autocorrelation functionC(τ). From the aboveCS(τ ) we getδ-peaks at
ω = 0,ω = ωmod, and at higher harmonics of the signal frequency. The output signal power
S is then defined [4] as the coefficient in front of theδ-function atω = ωmod (corresponding
to the area under the signal peak)

S = 2π

tmod

∫ tmod

0
dτ cos(ωmodτ)C

S(τ ) (8)

whereas the output noise powerN is the height of the noise spectrum atωmod:

N = 2
∫ ∞

0
dτ cos(ωmodτ)(C(τ)− CS(τ )). (9)

The exact temperature dependence ofS,N and the SNR in the maser output is illustrated in
figures 8–10†. They show the results of the evaluation of (8) and (9), for different modulation

† S, N and SNR are measured in dB in figures 8–10, withS[dB] = log10S. SinceN has the dimension of time,N
[dB] and SNR [dB] are defined up to an additive constant given by the employed unit of time.
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Figure 8. The signal outputS for 〈Nex〉 = 40,1Nex = 6.9, φ = 1.033 and different modulation
periodstmod. The signal exhibits its maximum atT = 0.82 K (tmod = 10 s), T = 0.63 K
(tmod = 42 s),T = 0.55 K (tmod = 100 s) andT = 0.23 K (tmod = 1000 s), respectively. The
circles show the results of the simulation of the maser dynamics, for comparison (for each value of
T the simulation was run for 50 million atoms).

Figure 9. The noise outputN for 〈Nex〉 = 40,1Nex = 6.9, φ = 1.033 and different modulation
periodstmod. The noise exhibits its maximum atT = 0.87 K (for tmod = 10 s),T = 0.57 K (for
tmod= 42 s),T = 0.45 K (for tmod= 100 s) andT = 0.27 K (for tmod= 1000 s), respectively.

periodstmod = 10 s, 42 s, 100 s and 1000 s. The valuetmod = 42 s was chosen since for this
period, atT = 0.55 K,〈Nex〉 = 40,1Nex = 6.9 andφ = 1.033, the average residence times in
both metastable states are equal to1

2 tmod= 21 s, defining a ‘symmetric’ situation (because the
modulation ofNex slightly changes the transition rates, the average residence times in the two
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Figure 10. The SNR on output, for〈Nex〉 = 40,1Nex = 6.9,φ = 1.033 and different modulation
periods. The local maximum of the SNR at temperaturesT 6 0.2 K (for tmod 6 100 s) is due
to dominant intra-state dynamics at such low temperatures. As soon as the increasing temperature
induces appreciable jumps between the metastable states (i.e. on a timescale no longer negligible
compared with the modulation periodtmod), the SNR increases up toT ' 0.7 K (in all cases),
where it exhibits a maximum, a signature of stochastic resonance.

states intersect at a slightly different temperature than in the unmodulated case of figure 4).
The maxima of the output signal powerS (figure 8) occur atT = 0.82 K (tmod = 10 s),
T = 0.63 K (tmod = 42 s),T = 0.55 K (tmod = 100 s) andT = 0.45 K (tmod = 1000 s). For
comparison, equality betweentmod and the sum of the modulation free (i.e.Nex(t) = 〈Nex〉)
average residence times in the two metastable states is realized forT = 1.12 K (tmod= 10 s),
T = 0.63 K (tmod = 42 s),T = 0.47 K (tmod = 100 s) andT = 0.24 K (tmod = 1000 s).
For modulatedNex one findsT = 1.01 K (tmod = 10 s), T = 0.55 K (tmod = 42 s),
T = 0.43 K (tmod= 100 s) andT = 0.23 K (tmod= 1000 s), respectively. Hence, the original
matching condition formulated for the choice oftmodas compared with theunmodulatedaverage
residence times [1] is excellent in the case of symmetric rates (tmod = 42 s andT = 0.63 K),
and slightly worse for the asymmetric case. The discrepancy in the asymmetric case just
underlines the approximate nature of the matching condition.

The maxima of the output noise powerN (figure 9) are attained at slightly different
temperatures from those for maximum signal power:T = 0.87 K (tmod= 10 s),T = 0.57 K
(tmod = 42 s),T = 0.45 K (tmod = 100 s) andT = 0.27 K (tmod = 1000 s). However, as for
the signal power, the ‘optimal’ temperature decreases as the modulation period increases, in
agreement with the temperature dependence of the transition rates displayed in figure 4.

Finally, combining the graphs forS andN yields the SNR in figure 10: at low temperatures,
the maser output is largely governed by intra-state dynamics (cf figure 6(a)). Provided the
noise level is sufficiently low for lowT (this is the case fortmod 6 100 s in figure 9) this
suggests a signal enhancement at very low temperatures in figure 10, which, however, doesnot
reflect macroscopic jumps of the maser field between its metastable states. Due to the slightly
nonsimultaneous temperature dependence ofS andN , the SNR then first decreases over a
finite interval ofT , until the temperature is large enough to induce appreciable transitions at
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the signal frequency. This causes an increase of the SNR up to temperatures aroundT ' 0.7 K,
where a maximum is observed forall modulation periods. Hence, the maser displays quantum
stochastic resonance on output. The largest enhancement factor of approximately 25 dB is
achieved for a modulation periodtmod ' 1000 s, which is of the order of the sum of the
average residence times in the quantum limit of figure 4, at very low temperaturesT < 0.25 K
(1/T > 4). We checked that the enhancement factor cannot be improved by choosing even
slower modulation periodstmod = 3000–10 000 s. ForT 6 0.2 K, S, N and SNR are nearly
constant because of the saturation of the transition rates forT → 0 K.

Let us finally stress that figures 8–10 also showS,N and SNR fortmod= 42 s as obtained
from the simulation of the micromaser dynamics (described in section 2.2). The results agree
very well with those obtained from (8) and (9), which underlines the consistency of our results.

3.2. Two-state model

In the preceding calculation of the SNR, we made use of the master equation (1), which
describes the complete dynamics of the photon distribution, without making explicit use of
the existence of a bistability. In order to get a better intuitive understanding, however, it is
instructive to focus our attention on the jumps between the metastable states of the cavity
field. Therefore, we come back to the picture developed in section 2.3, and assume that at any
time the maser field can only be in either one of the two bistable states. The equations (5a),
(5b) and (6), which specify the interstate transition ratesW12 andW21 keep their validity for
time-dependentNex, providedNex is modulated adiabatically, i.e. for modulation periodstmod

much longer than the relaxation time for reaching intra-state equilibrium (a condition which is
fulfilled for all the modulation periods we consider; compare the long and the short timescales
in figure 3). This provides us with periodically modulated transition ratesW12(t) andW21(t),
as illustrated in figure 11.

Given the transition ratesW12(t) andW21(t), the power spectrum ofβ(t) in the two-state
model can be calculated in much the same way as demonstrated above for the exact calculation.
We denote bym1 the probability of the system residing in the metastable state centred around
n1 (in short: ‘state 1’ hereafter).m2 = 1− m1 is then the probability for photon numbers
close to the centren2 of the second metastable state (in short: ‘state 2’; also see figure 1). For
the ensemble-averaged time evolution ofm1, the following rate equation applies [27]:

ṁ1 = −W12(t)m1 +W21(t)(1−m1). (10)

Similar to the master equation (1), (10) also has a periodic solutionm
(ss)
1 (t), which will be

approached by any solution of (10) fort →∞ (see (2.2) of [27] for an analytical expression for
m
(ss)
1 (t)). Now we can calculate the autocorrelation function of the detection probabilityβ(t),

which in the two-state model switches between two valuesβ(1) andβ(2), corresponding to state
1 and 2. Approximately,β(1) = βn1 andβ(2) = βn2, wheren1 andn2 are the positions of the
maxima of the steady state distributionp(ss) forNex = 〈Nex〉 (see figure 1). The autocorrelation
functionC̃ for the two-state model consequently reads:

C̃(τ ) =
2∑

i,j=1

β(i)β(j)〈mi(t + τ |j, t)m(ss)
j (t)〉tmod. (11)

In analogy to the foregoing paragraph,mi(t + τ |j, t) is the probability of occupying statei
at time t + τ , provided the maser was in statej at time t . m(ss)

j (t) gives the probability to
occupy statej at timet , without knowledge of the previous history. As we know,mi(t +τ |j, t)
approaches the periodic solutionm(ss)

i (t+τ) of (10) forτ →∞. Therefore,C̃(τ ) approaches a
periodic function forτ →∞, and output signal powerS and noise powerN can be determined
in the same way as in section 3.1.
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Figure 11. The periodic modulation of the transition rates from (a) state 1 (n1 ' 6) to 2 (n2 ' 26)
and (b) state 2 to 1, for (from bottom to top)T = 0.2 K, 0.6 K, 1.0 K, 1.4 K and 1.8 K. φ = 1.033,
Nex(t) = 40 + 6.9 sin(2π t/tmod). In (a), the curve forT = 0.2 K cannot be distinguished from
the t-axis. As expected, the average ofW12 andW21 over one modulation period increases with
increasingT . As a particular property of the micromaser, also the modulation amplitude ofW12
andW21 increases with increasingT .

Figures 12–14 show the corresponding results forS, N and SNR in the two-state model.
The signal exhibits a maximum at about the same temperature as the exact solution, but it
decreases more slowly at largeT and no maximum in the SNR can be observed. The reason
for this discrepancy is that by introducing twoconstantdetection probabilitiesβ(1) andβ(2), we
neglected the intra-state dynamics, i.e. the modulations ofβ(1) andβ(2) caused by the dynamics
of the photon distribution in the vicinity ofn1 andn2, respectively. Since the relaxation time for
reaching intra-state equilibrium is very small (see figure 3), there is practically no contribution
from the intra-state dynamics to the noise (see figure 13). However, thereis a contribution to
the signal because the local equilibrium distributions aroundn1 andn2 depend onNex, and
are therefore also periodically modulated (this is easily observed in figure 6(a)). This leads
to periodically modulated probabilitiesβ(1)(t) andβ(2)(t) for the detection of an atom in|d〉,
during the time the maser field resides in the corresponding metastable state 1 or 2, respectively.
A good approximation forβ(1,2)(t) can actually be obtained by determining the intersection
points of the gain and loss rate for each value ofNex(t) in figure 2. Doing so and replacingβ(1,2)

by β(1,2)(t) in (11), we obtain the results for the ‘improved two-state model’, characterized
by periodically modulated transition ratesW12(t) andW21(t) between periodically modulated
detection probabilitiesβ(1)(t) andβ(2)(t).

Figures 12–14 show that these results agree with the exact ones ((8) and (9)) very well
up toT ' 2 K. We remember (see section 2.1 and figure 3) that at higher temperatures, a
two-state model cannot be expected to give exact results because then the bistability of the
maser field is not as pronounced as at low temperatures (see figure 1). This is manifest in
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Figure 12. The signal outputS for the two-state model and the improved two-state model, compared
with the result of the exact solution (8).〈Nex〉 = 40,1Nex = 6.9, φ = 1.033 andtmod = 42 s.
The improved two-state model agrees with the exact results very well. At low temperatures, the
signal is mainly caused by the intra-state dynamics. At high temperatures, the intra-state dynamics
weaken the output signal powerS.

Figure 13. Noise outputN for the two-state model and the improved two-state model, compared
with the result of the exact solution (9).〈Nex〉 = 40,1Nex = 6.9, φ = 1.033 andtmod = 42 s.
N is rather insensitive to the intra-state dynamics, since the relaxation time for reaching intra-state
equilibrium is small compared with the modulation periodtmod.

the observation that at higher temperatures the intra-state relaxation time is no longer small
compared with the residence times in either of the two states (see the lower panel of figure 3).

Note that the improved two-state model improves comparison with the exact result in the
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Figure 14. The SNR on output for the two-state model and the improved two-state model, compared
with the exact result of (8), (9).〈Nex〉 = 40,1Nex = 6.9, φ = 1.033 andtmod = 42 s. The
improved two-state model agrees very well with the exact results. In the simple two-state model
no maximum in the SNR is observed, since the ouput signal powerS decreases less rapidly with
increasingT (see figure 12).

low-temperatureas well asin the high-temperature regime. For temperatures belowT ' 0.3 K
this is obvious because of the periodic intra-state modulation which can be observed, e.g. in
figure 6(a). The cause for the improvement is less obvious for temperatures aboveT ' 0.5 K.
A first hint is given by examination of the periodic modulation of the transition rates shown in
figure 11. Not only does the average of the rates over one modulation cycle increase withT ,
but also theamplitudeof the rate modulation, in contrast to the standard scenario of stochastic
resonance. Consequently, in the simple two-state model the signal power will decrease rather
slowly with increasingT , and hence the SNR does not decrease at all. Taking into account
the periodic modulation ofβ(1)(t) andβ(2)(t) allows us to compensate for this effect. For
sufficiently high temperatures, during one modulation cycle a large number of noise-induced
jumps between the metastable states will occur, and the ratio of the probabilitiesm1 andm2

for the system to reside in state 1 and 2 is essentially given by

m1(t)

m2(t)
= W21(t)

W12(t)
.

On the other hand,β(1)(t) and β(2)(t) are modulated such that they aremaximal when
W21(t) takes it maximumvalue (compare the figures 11(b) and 2), i.e. when the system
most likely resides in state 1 (the detection probability is thenβ(t) = β(1)(t) < β(2)(t),
see figure 2). For the same reason,β(1)(t) andβ(2)(t) take theirminimumvalues at themaxima
of W12(t), i.e. when the maser field resides most likely in state 2, with a detection probability
β(t) = β(2)(t) > β(1)(t) (see figure 2). Consequently, the periodic modulation ofβ(1)(t) and
β(2)(t) aroundβn1 andβn2 decreasesthe contrast of the detection signalβ(t) as compared
with the difference between the fixed valuesβ(1) = βn1 andβ(2) = βn2. This induces a faster
decrease of the signal with increasingT as compared with the simple two-state model, and
explains the success of the improved two-state model apparent from the figures 12–14.
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3.3. Residence-time distributions

We have seen above that the response of the micromaser to a weak periodic signal indeed
displays a maximum in the SNR on output, a characteristic feature of stochastic resonance. In
this final paragraph, we now want to quantify this phenomenon in a somewhat complementary
way, by the residence-time distributionV (τ) [5, 12, 27, 28] of the maser field in either of its
metastable states 1 and 2, centred around photon numbersn1 andn2, respectively (see figure 1).

Whereas the SNR characterizes stochastic resonance in terms of spectral amplification,
V (τ) essentially probes synchronization of the system reponse with the input signal. If there
is no periodic forcing, the transition rates between the two metastable states are constant, and
consequentlyV (τ) decays exponentially, with a decay constant given by the average residence
time in either of the metastable states. When adding a signal, i.e. a periodic modulation of the
transition rates (see section 3.2 and figure 11), there appears equally spaced maxima on top of
the exponential ofV (τ). These peaks are easy to understand: let us assume that at timet1 the
transition rateW12(t) has a maximum and the system jumps from state 1 to state 2. Now the
system resides in state 2 for a timeτ and then jumps back again to state 1 at timet2 = t1 + τ .
This will be more likely if at timet2 the corresponding transition rateW21(t) also takes its
maximum value. If the transition rates are modulated in phase opposition as in our case, see
figure 11 (i.e.W21(t) assumes its maximum half a modulation period later thanW12(t)), this
will be the case atτ (k) = (2k + 1)tmod/2,k = 0, 1, 2, . . . . Hence,V (τ)will exhibit maxima at
timesτ (k). Note thatV (τ) is, by definition,independentof the intra-state dynamics of either
one of the metastable states, and, consequently, there is no difference between the simple and
the improved two-state model introduced in the preceding section.

Figure 15 shows an example ofV (τ)deduced from (10), compared with the result obtained
from a numerical simulation of the maser dynamics (see section 2.2). Starting from the time-
dependent transition rates (6) obtained from the two-state model (with periodically modulated
Nex), we calculatedV (τ) exactly following the prescription given in section III of [27]. The
physical situation represented in the figure is the same as the one shown in figure 6(b) or in
figures 8–10, fortmod= 42 s andT = 0.6 K. Clearly, the residence time distributions in state
1,V (1)(τ ), as well as in state 2,V (2)(τ ), deviate from an exponential decay to be expected in
the absence of a periodic drive. WhereasV (1)(τ ) exhibits a shoulder before being essentially
damped out aboveτ ' tmod by the exponential envelope,V (2)(τ ) displays a maximum rather
precisely atτ (0), an indication of the synchronization with the input signal through stochastic
resonance, and also appears to indicate a second maximum atτ (1). Furthermore, bothV (1)(τ )
andV (2)(τ )are peaked atτ = 0, a signature of noise-induced, uncorrelated transitions between
the metastable maser states.

To allow some comparison with the above results for the SNR, we still need the temperature
dependence ofV (τ). This is illustrated in figure 16, compared with an exponential distribution
V (exp)(τ ) (with the same average residence time at the given temperature,V (exp)(τ ) =
exp(−τ/τav)/τav, whereτav =

∫∞
0 dτ τV (τ)). In state 1, at low temperatures, long residence

times are probable and the distribution exhibits many peaks, thus reducing the strength of
the first peak. At high temperatures, short residence times are probable and the distribution
decays practically to zero beforeτ = 1

2 tmod is reached. Therefore, at some intermediate
temperature (between 0.5 K and 0.6 K) the strength of the first peak exhibits a maximum.
The residence times in state 2 do not depend as strongly on the temperatureT as in state 1
(because the saturation of the transition rates sets in earlier for state 2, see figure 4, and, hence,
the temperature dependence ofV (τ) is less pronounced in the limit of smallT ). However,
it can clearly be seen that the first maximum ofV (τ) gets smaller for higher temperatures,
T > 0.6 K.
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Figure 15. The distribution of residence times in (a) state 1 (with the lower photon numbern1 ' 6)
and (b) state 2 (with the higher photon numbern2 ' 26). T = 0.6 K, tmod = 42 s,〈Nex〉 = 40,
1Nex = 6.9, φ = 1.033. The results from the simulation (histograms) agree perfectly well with
the prediction of the simple two-state model (solid curve).

To make these considerations more precise, it is necessary to quantify the strength of the
first maximum ofV (τ) at τ (0). In [5], it was proposed to simply consider the area under the

peak,P1 =
∫ ( 1

2 +α)tmod

( 1
2−α)tmod

V (τ) dτ , with 0 < α 6 1
4 (the actual value ofα is immaterial for the

behaviour ofP1). As a function of the temperature, it was shown thatP1(T ) goes through a
maximum. However,P1(T )also exhibits a maximum in the absence of any modulation on input
(i.e. for exponentialV (τ)) [5], since the above definition essentially sets a matching condition
with respect to a preselected average residence timeτ = 1

2 tmod. Therefore, we alternatively
suggest to consider the difference betweenV (τ)and the corresponding exponential distribution
V (exp)(τ ), and introduce the following measure for the strengthS1 of the first peak,

S1 =
∫ τ2

τ1

dt (V (τ )− V (exp)(τ )).

Here, τ1 and τ2 are defined byV (τ1,2) = V (exp)(τ1,2), τ1 < 1
2 tmod, τ2 > 1

2 tmod and
V (τ) > V (exp)(τ ) for τ1 < τ < τ2. In contrast toP1, S1 only measures the synchronization
due to the modulation of the transition rates rather than the mere matching of timescales.
Since it is the modulaton of the transition rates that makes for the occurence of stochastic
resonance, a maximum inS1(T ) as a function of the temperature can be considered as an
unambiguous signature of stochastic resonance. Figure 17 shows the dependence ofS1 onT ,
for the parameters of the figures 8–10 (cf also figure 16). For the slower modulation periods
tmod 6 100 s,S1 exhibits a maximum in state 1 and fairly large values in state 2. Stochastic
resonance is most pronounced here for the intermediate modulation periodstmod = 42 s
(maximum ofS1 at T = 0.56 K) andtmod = 100 s (maximum ofS1 at T = 0.46 K), at
temperatures where the residence times in state 1 and state 2 are roughly equal (see section 3.1).
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Figure 16. Distribution of residence times (a) in state 1 (with the lower photon numbern1 ' 6)
and (b) in state 2 (with the higher photon numbern2 ' 26) for T = 0.3–0.9 K. 〈Nex〉 = 40,
1Nex = 6.9, φ = 1.033 andtmod = 42 s. In this temperature range, the residence times in state
2 are less sensitive to changes inT , due to the earlier saturation of the transition rates from state
2 to 1. Dashed curves: exponential distribution with the same average as the corresponding solid
curve.

The cases oftmod = 10 s (maximum atT = 0.8 K) and tmod = 1000 s (maximum at
T = 0.27 K) are less favourable, andS1 vanishes in state 2 for the longest modulation period,
since even for low temperatures the residence times in this state are much shorter than1

2 tmod.
For all values oftmod, the ‘optimal’ temperature is not too far from the temperatures

which yield optimal signal enhancement in the figures 8 and 10. However, the comparison
of the figures 8–10 and 17 fortmod = 1000 s clearly shows that optimal signal enhancement
is not necessarily equivalent to optimal synchronization. Since the average residence times
are very asymmetric at low temperatures for〈Nex〉 = 40, as illustrated by figure 4(a), the
low-frequency driving withtmod = 1000 s cannot induce optimal synchronization despite a
signal enhancement of 25 dB in the SNR. However, as illustrated in figure 4(b), a slight change
in 〈Nex〉 allows for almost symmetric residence times in the quantum limitT = 0 K, and
figure 18 shows that for〈Nex〉 = 49.7 K (with all other parameters of figure 17 unchanged)
optimal synchronization of the quantum jumps of the maser field with the applied signal is
achieved by tuning the signal to the residual transition rates atT = 0 K, corresponding to a
modulation periodtmod= 1590 s.

4. Conclusion

In this paper, we have shown that a fundamentaland experimentally realizedquantum system,
the micromaser, exhibits stochastic resonance on output when driven by a weak periodic signal
on input. The effect is most pronounced (with a signal enhancement of approximately 25 dB)
for driving periods which match the sum of the residual quantum transition rates between the
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Figure 17. The strengthS1 of the first peak in the residence-time distributionV (τ) in (a) state 1
(with the lower photon numbern1 ' 6) and (b) state 2 (with the higher photon numbern2 ' 26),
for different modulation periodstmod. 〈Nex〉 = 40,1Nex = 6.9, andφ = 1.033. S1 exhibits a
maximum in state 1 and fairly large values in state 2, with the exception of the largest modulation
periodtmod= 1000 s. In the latter case, the residence times in state 2 are much shorter than1

2 tmod,
even at low temperatures (due to residual quantum noise), andS1 vanishes.

Figure 18. The same as figure 17, but〈Nex〉 = 49.7. For this average atomic flux, the residence
times in state 1 and 2 are closest to each other in the limitT = 0 K (see figure 4(b)). Consequently,
optimal synchronization of the quantum jumps of the maser field with the signal is achieved when
the signal period is tuned to the residual transition rates atT = 0 K.
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metastable states of the maser field atT = 0 K, i.e. when the input signal is tuned to the quantum
noise level inherent in the maser dynamics. However, an optimal signal enhancement in the
SNR does not necessarily correspond to an optimal synchronization of the maser output with
the input signal (as quantified byS1), since the latter requires symmetric residence times in the
metastable states of the cavity field. Such a symmetric situation atT = 0 K can, nonetheless,
be established by the appropriate choice of〈Nex〉 (or θ ), which is an experimentally well-
controlled parameter.

In our treatment, we focused on the basic scenario for stochastic resonance, which can
also be directly implemented in state of the art experiments. However, some very intriguing
questions have not been discussed here and shall be dealt with in future work. Let us just open
up some perspectives:

• In the above, we observed stochastic resonance in the detection probabilityβ(t) of an atom
in the lower Rydberg state|d〉, on exit from the cavity. The statistics of the detector clicks
completely determine the statistics of the photon distribution inside the cavity and vice
versa [37]. However, the SNR of the average photon number in the cavity mode (replace
βnβm bynm in (7)) doesnotexhibit a maximum asT increases, but rather increases (with
decreasing slope) at large temperatures (up toT ' 3 K) [60]. Consequently, the maximum
in the SNR observed forβ(t) must be encoded in the higher correlation functions of the
photon distribution. This provides an explicit example highlighting the importance of the
appropriate choice of the output variable to observe stochastic resonance in the SNR [12],
and will be discussed in more detail in a separate contribution.
• This work starts out with incoherent pumping of the maser field, i.e. there are no

correlations induced between different number states of the cavity field. The latter can be
generated by feeding the cavity with atoms which are prepared in a coherent superposition
of |u〉 and |d〉 [44]. The signature of stochastic resonance in the coherences remains
hitherto completely unexplored.
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